Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 345: 140457, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839744

RESUMO

In this work, sixteen typical chlorinated and brominated aromatic disinfection by-products (DBPs) were selected as examples to investigate their different degradation mechanisms initiated by HO• and SO4•-. Addition reactions were the main mode of degradation of DBPs by HO•, while SO4•- dominated H-abstraction reactions and single electron transfer reactions. Chlorinated compounds had higher reactivity than brominated compounds. Furthermore, substituents with stronger electron-donating effects promoted the electrophilic reaction of DBPs with the two radicals. In addition, we developed a model based on the chemical properties LUMO, fmax-, and hardness for predicting the average reaction energy barriers for the initial reactions of DBPs with HO• and SO4•-. The model had good predictive performance for the difficulty of degradation of different DPBs by HO• and SO4•-, with R2 values of 0.85 and 0.87, respectively. Through the degradation efficiency simulation, we found that longer reaction times, higher oxidant concentrations and lower pollutant concentrations were more favorable for the removal of DBPs. The UV/PDS process showed better degradation of DBPs than the UV/H2O2 process. In addition, most degradation products of DBPs exhibited less toxicity to aquatic organisms than their parent compounds. This study provided theoretical guidance for the degradation and removal of other aromatic DBPs at the molecular level.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Desinfecção , Poluentes Químicos da Água/análise , Raios Ultravioleta , Cinética , Halogenação , Cloro/química , Oxirredução
2.
Chemosphere ; 343: 140303, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769920

RESUMO

The reactions between chlorobenzene(CB) and ozone have been studied comprehensively in this paper. Chlorobenzene is a commonly found chlorinated aromatic volatile organic compound(VOC), and its emission into the atmosphere can cause harm to the ecosystem and human health. The frequent occurrence of mineral particles from sandstorms exerts a significant influence on the atmospheric chemistry of the troposphere. Mineral particles are abundant in SiO2 and Al2O3 content. Therefore, we investigated the homogeneous and heterogeneous reaction processes of CB and ozone in the atmosphere by using density functional theory (DFT) method at the M06-2X/6-311++g(3df,2p)//M06-2X/6-31+g(d,p) level. The atmospheric fate, reaction rate and toxicity evaluation of CB ozonation were studied in the gas-phase section. Toxicity evaluation results showed that ozonation of CB could effectively reduce its toxicity. For the heterogeneous process, we simulated three types of SiO2 clusters and nine types of (Al2O3)n clusters, and studied the configurations of CB adsorbed on the cluster surfaces. We found that adsorption of CB on the SiO2 clusters was achieved through hydrogen bonding, while adsorption of CB on the Al2O3 clusters was achieved through both hydrogen bonding and metal bonding. The energy for CB adsorption on the (Al2O3)n cluster surface was higher than that for the SixOy(OH)z cluster surface, and both types of clusters exhibited efficient adsorption of CB. As the SixOy(OH)z clusters grew larger, the rates for the reactions between O3 and CB increased. CB travelled long distances along the Al2O3 clusters, leading to an extended influence range.

3.
Environ Sci Technol ; 57(47): 18991-18999, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37243626

RESUMO

This study explores the formation of bromate (BrO3-) in the copresence of Fe(VI) and bromide (Br-). It challenges previous beliefs about the role of Fe(VI) as a green oxidant and highlights the crucial role of intermediates Fe(V) and Fe(IV) in the conversion of Br- to BrO3-. The results show that the maximum concentration of BrO3- of 48.3 µg/L was obtained at 16 mg/L Br- and that the contribution of Fe(V)/Fe(IV) to the conversion was positively related to pH. The study suggests that a single-electron transfer from Br- to Fe(V)/Fe(IV) along with the generation of reactive bromine radicals is the first step of Br- conversion, followed by the formation of OBr- which was then oxidized to BrO3- by Fe(VI) and Fe(V)/Fe(IV). Some common background water constituents (e.g., DOM, HCO3-, and Cl-) significantly inhibited BrO3- formation by consuming Fe(V)/Fe(IV) and/or scavenging the reactive bromine species. While investigations proposing to promote Fe(V)/Fe(IV) formation in Fe(VI)-based oxidation to enhance its oxidation capacity have been rapidly accumulated recently, this work called attention to the considerable formation of BrO3- in this process.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Brometos , Bromo , Bromatos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Oxirredução
4.
Chemosphere ; 335: 139062, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37253402

RESUMO

Degradation of Chlorine-containing disinfection by-products(Cl-DBPs) on surface by electrocatalytic hydrodechlorination (EHDC) is considered a promising advanced water treatment method. Cl-DBPs have ecological toxicity and health risks so that it is urgent to degrade DBPs. We designed and verified the degradation performance of the EHDC of 18 kinds of DBPs (TAAs, TANs, TALs, TNMs, TAcAms, THMs) with different substituents led by the Ti3C2X2(X = O/OH) system by the first-principles. On the surface of Ti3C2(OH)2, DBPs react with atomic hydrogen (*H) by a direct-indirect continuous reduction mechanism to eliminate the Cl atom in turn. Dissociative adsorption of DBPs on the surface of Ti3C2(OH)2 simultaneously realizes the first electron transfer step and forms H vacancy, which makes its electrocatalytic activity superior to that of Ti3C2O2. Removing the six types of DBPs only needs to add -0.1 V of applied potential. In addition, we investigated the impact of substituents and chlorination degree on the reactivity of DBPs removal. The strong electron-withdrawing group is more conducive to the dechlorination reaction. Dehalogenation is much favorable in thermodynamics as the increase in chlorination degree. This study provides important insights and efficient catalysts for the degradation of DBPs and shows the potential of MXenes in eliminating chloride in water.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Cloro/análise , Cloretos , Poluentes Químicos da Água/análise , Titânio , Halogênios , Desinfecção/métodos , Halogenação , Purificação da Água/métodos
5.
J Hazard Mater ; 452: 131233, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948122

RESUMO

In this work, the hydroxylation mechanisms and kinetics of some emerging disinfection byproducts (DBPs) have been systematically investigated through theoretical calculation methods. Five chlorophenols and eleven halogenated pyridinols were chosen as the model compounds to study their pH-dependent reaction laws in UV/H2O2 system. For the reactions of HO• with 37 different dissociation forms, radical adduct formation (RAF) was the main reaction pathway, and the reactivity decreased with the increase of halogenation degree. The kapp values (at 298 K) increased with the increase of pH from 0 to 10, and decreased with the increase of pH from 10 to 14. Compared with phenol, the larger the chlorination degree in chlorophenols was, the stronger the pH sensitivity of the kapp values; compared with chlorophenols, the pH sensitivity in halogenated pyridinols was further enhanced. As the pH increased from 2 to 10.5, the degradation efficiency increased at first and then decreased. With the increase of halogenation degree, the degradation efficiency range increased, the pH sensitivity increased, the optimal degradation efficiency slightly increased, and the optimal degradation pH value decreased. The ecotoxicity and bioaccumulation of most hydroxylated products were lower than their parental compounds. These findings provided meaningful insights into the strong pH-dependent hydroxylation of emerging DBPs on molecular level.

6.
Environ Pollut ; 324: 121395, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871750

RESUMO

Organophosphate esters (OPEs) are widely detected in the atmosphere. However, the atmospheric oxidative degradation mechanism of OPEs has not been closely examined. This work took density functional theory (DFT) to investigate the tropospheric ozonolysis of organophosphates, represented by diphenyl phosphate (DPhP), including adsorption mechanisms on the surface of titanium dioxide (TiO2) mineral aerosols and oxidation reaction of hydroxyl groups (·OH) after photolysis. Besides, the reaction mechanism, reaction kinetics, adsorption mechanism, and ecotoxicity evaluation of the transformation products were also studied. At 298 K, the total reaction rate constants kO3, kOH, kTiO2-O3, and kTiO2-OH are 5.72 × 10-15 cm3 molecule-1 s-1, 1.68 × 10-13 cm3 molecule-1 s-1, 1.91 × 10-23 cm3 molecule-1 s-1, and 2.30 × 10-10 cm3 molecule-1 s-1. The atmospheric lifetime of DPhP ozonolysis in the near-surface troposphere is 4 min, much lower than that of hydroxyl radicals (·OH). Besides, the lower the altitude is, the stronger the oxidation is. The TiO2 clusters carry DPhP promoting ·OH oxidation but inhibiting ozonolysis of DPhP. Finally, the main transformation products of this process are glyoxal, malealdehyde, aromatic aldehydes, etc., which are still ecotoxic. The findings shed new light on the atmospheric governance of OPEs.


Assuntos
Retardadores de Chama , Ozônio , Fosfatos , Ésteres , Organofosfatos , Atmosfera
7.
J Environ Chem Eng ; 11(1): 109193, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36569264

RESUMO

Residues in surface water of ribavirin, which used extensively during the COVID-19 pandemic, have become an emerging issue due to its adverse impact on the environment and human health. UV/H2O2 and UV/peroxydisulfate (PDS) have different degradation effects on ribavirin, and the same operational parameter have different effects on the two processes. In this study, the reaction mechanism and degradation efficiency for ribavirin were studied to compare the differences under UV/H2O2 and UV/PDS processes. We calculated the total rate constants of ribavirin with HO• and SO4 •- in the liquid phase as 2.73 × 108 and 9.39 × 105 M-1s-1. The density functional theory (DFT) calculation results showed that HO• and SO4 •- react more readily with ribavirin via H-abstraction (HAA). The nitrogen-containing heterocyclic ring is difficult to undergo ring-opening degradation. The UV/PDS process was more stable and performed better than the UV/H2O2 for the ribavirin degradation when the same molar oxidant dosage was applied. HO• plays an extremely important role in the degradation of ribavirin by UV/PDS. The reason for this phenomenon is the combination of the higher yield of HO• produced in the UV/PDS process and the faster reaction rate of ribavirin with HO•. The UV/H2O2 process is more sensitive to pH than UV/PDS. Alkaline condition can significantly inhibit the ribavirin degradation. The effects of natural organic matter (NOM) and ribavirin concentration were also compared. Eventually, the toxicity prediction of the product showed that the opening-ring products were more toxic than the parent compound.

8.
J Hazard Mater ; 443(Pt B): 130216, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36334575

RESUMO

Recent research revealed inhibition or enhancement of dissolved organic matter (DOM) to the degradation of trace organic contaminants (TrOC) in natural and engineered water systems. Phenols containing acetyl, carboxyl, formyl, hydroxy, and methoxy groups were selected as the model DOM to quantitatively study their roles in the degradation of simple anilines, sulfonamide antibiotics, phenylurea pesticides by sulfate radicals (SO4•-). Experimental results found that p-methoxyphenol inhibited aniline and sulfamethoxazole degradation by thermally activated peroxydisulfate (TAP), while p-acetylphenol slightly promoted aniline degradation. Quantum chemical calculations were applied to study the microscopic mechanism and kinetics of phenols affecting the degradation of aniline pollutants (AN) in three ways: competitively reacting with SO4•-, repairing aniline cationic radicals (AN•+) and phenylaminyl radicals (AN(-H)•), and generating phenoxy radicals to degrade anilines. Generally, the degradation of sulfonamides and phenylureas prefer to be inhibited by hydroxy- and methoxy-phenols with low oxidation potential (Eox), due to their diffusion-limiting reaction with SO4•- and rapid back-reduction AN•+ with the calculated rate constants of (0.02 - 6.38) × 109 M-1 s-1. Phenols repairing AN(-H)• through H abstraction reaction is speculated to possibly dominate the joint degradation of phenols and anilines by TAP, which has a poor correlation with Eox. This study provides mechanistic insight into the chemical behavior of complex and heterogeneous DOM in complex aqueous environments.


Assuntos
Sulfatos , Poluentes Químicos da Água , Teoria da Densidade Funcional , Compostos de Anilina , Fenóis , Cinética , Oxirredução
9.
Biomark Insights ; 17: 11772719221141525, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533271

RESUMO

Next-generation sequencing-based genomic profiling facilitates biomarker detection by cell-free DNA (cfDNA) liquid biopsy. However, the efficiency of mutation calling and the prognostic value of cfDNA biomarkers are disputed. We investigated 24 patients with gastric cancer in this study, using a 605-gene sequencing panel to sequence their plasma cfDNA and tumor tissue DNA. The mutation concordance between plasma cfDNA and tumor tissue DNA was 70.6% in stage IV gastric cancer and 30.2% in stage III gastric cancer, indicating insufficient mutation detection rates in stage III and early-stage cancer. When compared with total cfDNA load and blood tumor mutation burden (bTMB), the variant allele frequencies (VAF) of commonly mutated genes are highly accurate in representing disease burden. Further, VAF are a better prognostic indicator compared with serum biomarkers including carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), cancer antigen 125 (CA125), and alpha-fetoprotein (AFP). The use of cfDNA in molecular profiling of patients allows prediction of patient survival and clinical response, as well as the development of personalized therapy regimens.

10.
Chemosphere ; 291(Pt 3): 133034, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34822870

RESUMO

Chlorine-based advanced oxidation processes (AOPs) have been extensively studied to remove contaminants through generating HO• and reactive chlorine species, including ClO• and Cl•. In this work, 2,4,6-tribromoanisole (246TBA) and 2,4,6-tribromophenol (246TBP) were selected as model to investigate the reaction mechanisms and micro-kinetics of brominated contaminants with HO•, ClO• and Cl• in chlorine-based AOPs. Also, the apparent degradation kinetics of two compounds were simulated at pH 3.0-9.5 under UV/H2O2, UV/chlorine and UV/NH2Cl. Calculated results showed that neutral 246TBA and 246TBP exhibited similar reactivity to HO• and ClO•, which was different from anionic 2,4,6-tribromophenolate (246TBPT): radical adduct formation (RAF) and H atom abstraction (HAA) were predominant mechanisms for the HO• and ClO• initiated reactions of 246TBA and 246TBP, while RAF and single electron transfer (SET) for 246TBPT; the reaction rate constants of 246TBA and 246TBP with HO• and ClO• were lower than 107 M-1 s-1, and such rate constants dramatically increased to 1010 M-1 s-1 once 246TBP was deprotonated to 246TBPT. The apparent degradation kinetics of 246TBA at pH 3.0-9.5 was simulated in the order of UV/NH2Cl > UV/chlorine > UV/H2O2, and UV/chlorine and UV/NH2Cl were more effective for the removal of 246TBP and 246TBPT than UV/H2O2. UV and/or Cl• dominated 246 TBA degradation under three AOPs. The main radicals mediating 246TBP and 246TBPT degradation are respectively HO• under UV/H2O2, ClO• under UV/chlorine, and HO• and Cl• under UV/NH2Cl. The transformation products of 246TBA, 246TBP and 246TBPT, especially methoxylated and hydroxylated polybrominated diphenyl ethers (MeO-PBDEs and HO-PBDEs), were still toxic pollutants.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro , Peróxido de Hidrogênio , Cinética , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/análise
11.
Environ Pollut ; 295: 118692, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34921942

RESUMO

Low-molecular-weight (LMW) phthalate acid esters (PAEs) tend to enter the atmosphere, flying for several kilometers, so it is easy to endanger human health. This work is the first to use quantum chemistry calculations (Gaussian 16 program) and computational toxicology (ECOSAR, TEST, and Toxtree software) to comprehensively study the ozonolysis mechanism of six LMW PAEs (dimethyl phthalate (DMP), diethyl phthalate (DEP), dipropyl phthalate (DPP), diisopropyl phthalate (DIP), dibutyl phthalate (DBP), and diisobutyl phthalate (DIBP)) in the atmosphere and the toxicity of DMP (take DMP as an example) in the conversion process. The results show that the electron-donating effect of the ortho position of the LMW PAEs has the most obvious influence on the ozonolysis. We summarized the ozonation reaction law of LMW PAEs at the optimal reaction site. At 298 K, the law of initial ozonolysis total rate constant of the LMW PAEs is kDIP > kDPP > kDIBP > kDMP > kDEP > kDBP, and the range is 9.56 × 10-25 cm3 molecule-1 s-1 - 1.47 × 10-22 cm3 molecule-1 s-1. According to the results of toxicity assessment, the toxicity of products is lower than DMP for aquatic organisms after ozonolysis. But those products have mutagenicity, developmental toxicity, non-genotoxicity, carcinogenicity, and corrosiveness to the skin. The proposed ozonolysis mechanism promotes our understanding of the environmental risks of PAEs and provides new ideas for studying the degradation of PAEs in the tropospheric gas phase.


Assuntos
Ozônio , Ácidos Ftálicos , China , Dibutilftalato/toxicidade , Ésteres/toxicidade , Humanos , Ozônio/toxicidade , Ácidos Ftálicos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...